

2015/04/01 © Mpression by Macnica Group
http://www.m-pression.com

Odyssey Offload Processing User Reference

Mpression Odyssey IoT Solutions Kits

For Odyssey FW v2.0

Mpression Odyssey IoT Solutions Kits

2 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits

© Mpression by Macnica Group

© Mpression – Solutions by Macnica Group

Index

1. Introduction and Overview………………………………………………………………..3

 Some things users can do with Odyssey v2.0
 Features

 Firmware & Smartphone App Requirements

 Command Structure and Command Entry

 Mixing Standard Commands and Offload Commands

2. Offload Processing Limitations and Special Enhancements………………..6

3. Command Opcodes and Descriptions Reference………………………………..8
3.1 Accumulator / Variables / User RAM
3.2 Arithmetic

 Addition

 Subtraction

 Multiplication (add/subtract options)

 Division (add/subtract options)
3.3 Bit / Logical / Mask / Byte swap Operations
3.4 Miscellaneous Control

 Delays

 LEDs: duration, flashing…
3.5 Program Control

 State machine reset

 Branches / Compares
3.6 Input / Output

 I2C Reads, Writes, multiple

 To/From Accumulator, User RAM
3.7 Test & Diagnostics

 Run custom commands from Smartphone

Appendix A: Considerations using Math………………………………………………22

Appendix B: New Personalities & Example Entry…………………………………23

Appendix C: Personality creation template………………………………………….26

Appendix D: Odyssey I2C addresses & Byte Order……………………………….30

Document Revision History………………………………………………………………….31

Mpression Odyssey IoT Solutions Kits

 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits 3

© Mpression by Macnica Group

1. Introduction and Overview

Beginning with Odyssey release v2.0, the on-board EFM32 microcontroller can perform offload processing on Sensor
data and user entered data. There are several other operations that involve timing, I2C communications, LED
indication and general state machine control.

1.1 Some things users can do with Odyssey v2.0
 Customize how, when and what data is collected – and display it

 Collect data from sensors or FPGA in a loop and store on-board:
o Temperature, light, proximity, FPGA acquired data including sound, voltage, etc
o Timing between samples can be milliseconds, hours, days (programmable)
o Scale or process data samples using math, shifting, masking

 Convert data to display multiple formats (i.e. Temperature in both Celsius and Fahrenheit)

 Build data averages or other statistics

 Give user indication of data or status using the BLE LED, flashing patterns

 On the smartphone app…
o Use a single button to display all collected data (auto indexing)
o View in decimal or hex format

 Use and Learn from new example personalities
o Custom Command Test: Type in custom instructions directly to the App screen, run them and display results

without building a personality first
o Temperature collection personality: Collects temperature data in a timed loop, then allows display of the

collected and converted values with single buttons (auto-indexed)

1.2 Features
 Arithmetic: addition, subtraction, multiplication, division, signed math

 Multiple sources & destinations for data: accumulators, user RAM, user input data

 Logic: masking, OR, AND, XOR

 Byte operations: byte ordering / swap, endian changes

 Delays, LED on/duration/flashing

 Branches, looping, compares (branch-on-compare)

 I2C reads/writes, looped IO to/from accumulators or user RAM with single commands, auto indexing of RAM

 Test commands

1.3 Resources available to the offload processing state machine
 Two accumulators: Accumulator A and B

 Variables/Counters: Counter1, Counter2, I2CdeviceAdrs, IOcounter

 User RAM: 256 indexed bytes, UserRAMindex (points to RAM index)

 Over 100 pre-defined opcodes

 Full state machine with branching (capable of processing loops)

1.4 Firmware and App requirements for Offload Processing
The Odyssey onboard processors (BLE and EFM32) must have matching firmware.

 BLE firmware v2.0

 EFM32 firmware v2.0

 Smartphone App v2.0: “Mpression Odyssey” from Google Play or Apple App Store

Check the Odyssey Software Download site for firmware updates, release notes, etc.

http://www.m-pression.com/solutions/boards/odyssey/odyssey-downloads

Mpression Odyssey IoT Solutions Kits

4 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits

© Mpression by Macnica Group

To determine what firmware your Odyssey has programmed, see the table below:

Firmware
Version

At power-on, green LED on BLE board
flashes 3 times in first seconds

Version displayed on the User Console display
(within first 2 times hitting <enter> key)

1.0 No None

1.1 Yes None

2.0 Yes 2.0

1.5 Command Structure & Command Entry
Each opcode executes specific actions and most can use various sources or destinations for data (i.e. accumulator,
user data, user RAM). Each offload processing command has the following information associated with it:

 Pre-defined opcode (1 byte) “OPCODE”

 Parameter byte “PARAM”

 User Data word (4 bytes) “USER_DATA”

NOTE: The Web Application GUI was not modified to show opcode names as this would be an extensive upgrade and
not flexible. So Opcodes, Parameter bytes and User Data are all entered as hex data to the existing Web Application,
after selecting the new Command Type: Offload_CMD.
Users may also refer to the example in Appendix B for entering offload processing personality data.

Within the Odyssey Web Utility, users create “Offload Commands” using the following fields:
-Offload CMD (new drop-down selection) is selected in the “Command Type” Field
-Opcode byte values are placed in the “I2C Device Address/SPI CMD” field
-Parameter Byte values are placed in the “Register Address/ I2C CMD byte” field
-User Data values use the “Write Source” and “Fixed Write Data” fields
 (or entered in entry field next to the button – according to “Write Source”)
-Other fields will be grayed out

All offload processing is accomplished through the two new drop-down Command Types:

 Offload CMD

 Offload Read

NOTE: If a write source is selected for user entry, the Field number must match the button number.

1.6 Offload Commands (Offload_CMD)
When Offload_CMD is selected as Command Type, the opcode, parameter byte and user data information is passed
to the Offload processor (EFM32) by the Bluetooth processor (BLE).
Opcodes can load accumulators or operate on data in accumulators, user RAM or counters/indices/flags. They can
also control I2C communications, LED or timer operations and allow branching (loops). Each opcode is associated
with a routine in the EFM32 firmware that performs the operation.

1.7 Offload Reads (Offload_Read)

Mpression Odyssey IoT Solutions Kits

 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits 5

© Mpression by Macnica Group

Eventually, the user will typically want to get data back to the smart phone app for display. For this, the new drop
down Command Type Offload_Read command will read the resulting value from the accumulator for display in the
smart phone App.

NOTE: The Return Field number (in Read Destination field) must match the button number.

1.8 Mixing Standard Commands with Offload Commands
Users may mix the original commands with Offload Commands (except for within loops). For example, a user can do
an I2C Read (an original command) and set the data destination field to “Offload Accumulator”. Then the user can
do Offload commands to process the data. Seen below is an example of an I2C Read to accumulator.

For more details on creating personalities, see section 3 in the Mpression Odyssey User Guide. Appendix B in this
document will also show details for creating personalities with offload processing commands.

NOTES:
- The accumulators are NOT cleared between operations – to allow continuity between multiple processing

commands. They are cleared to zero at power-on or using the reset opcode.
- Accumulator A (ACCUM_A) contents are returned via the Offload_Read command unless a special opcode is

used to return Accumulator B.
- Invalid data (i.e. out of range) for opcode or parameter byte will generally result in NOP (no activity) but can

result in undetermined behavior.

http://www.m-pression.com/documents/10157/387dccdc-9e6b-47be-b53e-bd39e5f0b0c3

Mpression Odyssey IoT Solutions Kits

6 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits

© Mpression by Macnica Group

2. Offload Processing Limitations & Special
Enhancements

2.1 Limitations
 Error checking

The offload processing state machine does minimal range checking. If a user enters data that is out of range, the

resulting action may be unknown. In most cases, the operation becomes a NOP (nothing happens) for that

command. The user may also debug a new personality using extra Offload Read commands to see the

Accumulator contents, or use the new “Custom Command Test” personality.

 Loops

When users create loops with branching commands, a non-Offload command cannot be in the loop. This is

because the BLE processor must receive original (non-offload) commands from Bluetooth directly for processing

and cannot intervene in the state machine loop process.

 Standard Command Count Limitations

Odyssey has always had the following limitations for the number of commands allowed per personality:

o Setup Commands: 15 commands

o Button Commands: 5 commands per button

o Background commands: 5 commands (execute every 1 second when enabled)

Users may wish to use the “Setup Commands” area to allow for more commands, for example, when creating a

loop for collecting data. See the new personality “Temp Collection” details in Appendix B.

 Signed Arithmetic

As with any compiler, users must take care and be clear what size their data is when working with signed math.

For example, signed arithmetic must use operands the same size. This is due to the position of the sign bit (and

2’s complement conversions). There are opcodes available for converting sizes to accommodate mixed size

operands.

See Appendix A: Considerations using Math for more information.

2.2 Special Enhancements
 Data Retained between Buttons, Personalities

If users do not reset/clear accumulators or data, the information in those resources remain unchanged for the

next button or personality – so the user can take advantage of more command slots. The following remain

unchanged unless cleared:

o Accumulators, user RAM, Counter1/Counter2, I2C_adrs_reg, User_ram_index, IOcounter

 I2C looped Accesses and Auto-Indexing

I2C reads and writes can be done as single or multiple IO accesses with a single command. I2C sources and

destinations:

o Accumulator A and user RAM and user Data (command input) can be sources

o Accumulator A and user RAM can be destinations

Likewise, a single button can read out multiple RAM locations due to auto-indexing

Mpression Odyssey IoT Solutions Kits

 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits 7

© Mpression by Macnica Group

3. Command Opcodes and Descriptions

The following is a list of the Opcodes by category with descriptions. For each opcode, any required Parameter Byte

(PARAM) and User Data word (USER_DATA) settings are also described.

Anywhere a setting is marked “don’t care”, it is best set to 0 (zero).

Commands User Reference
In order of Opcode value 0x00 to 0xFF

 OPCODE 0x00: NOP
No activity
PARAM: don’t care USER_DATA: don’t care

3.1 SIMPLE ACCUMULATOR, VARIABLES & USER_RAM
--- ACCUMULATOR

 OPCODE 0x01: Load ACCUMULATOR with USER DATA
PARAM: selects Accumulator to load: 0=ACCUM_A 1=ACCUM_B
USER_DATA: data to be placed in selected Accumulator

 OPCODE 0x02: Load ACCUMULATOR with USER DATA (signed)
PARAM: selects Accumulator to load and signed data size:
 0=ACCUM_A, 32-bit signed data

1=ACCUM_A, 16-bit signed data
2=ACCUM_A, 8-bit signed data

 3=ACCUM_B, 32-bit signed data
4=ACCUM_B, 16-bit signed data
5=ACCUM_B, 8-bit signed data

USER_DATA: data to be placed in selected Accumulator

 OPCODE 0x03: Copy ACCUMULATOR
PARAM: sets copy direction: Copy ACCUM_A to B or Copy ACCUM_B to A. Afterwards, both hold the same value.
 0=ACCUM_A -> ACCUM_B 1=ACCUM_B -> ACCUM_A
USER_DATA: don’t care

 OPCODE 0x04: SWAP ACCUMULATORS
ACCUM_A gets ACCUM_B’s contents and ACCUM_B gets ACCUM_A’s contents
Accum_A <-> Accum_B
PARAM: don’t care USER_DATA: don’t care

 OPCODE 0x05: Set ACCUM_B Read
ACCUM_A is the default source for Offload Read. This command sets a flag so the next
Offload Read will read ACCUM_B instead (once). Afterward the default to ACCUM_A is re-set.
PARAM: don’t care USER_DATA: don’t care

--- ACCUMULATOR – SIGNED SIZE & ABSOLUTE VALUE

 OPCODE 0x06: Convert signed data size in ACCUMULATOR

Mpression Odyssey IoT Solutions Kits

8 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits

© Mpression by Macnica Group

Converts the size of a signed integer between 8, 16 and 32-bit sizes.
PARAM: sets the Accumulator and data size conversion:
 0=NOP
 1=Use ACCUM_A, convert 32-bit to 8-bit 0x11=Use ACCUM_B, convert 32-bit to 8-bit
 2=Use ACCUM_A, convert 16-bit to 8-bit 0x12=Use ACCUM_B, convert 16-bit to 8-bit
 3=Use ACCUM_A, convert 32-bit to 16-bit 0x13=Use ACCUM_B, convert 32-bit to 16-bit
 4=Use ACCUM_A, convert 16-bit to 32-bit 0x14=Use ACCUM_B, convert 16-bit to 32-bit
 5=Use ACCUM_A, convert 8-bit to 16-bit 0x15=Use ACCUM_B, convert 8-bit to 16-bit
 6=Use ACCUM_A, convert 8-bit to 32-bit 0x16=Use ACCUM_B, convert 8-bit to 32-bit
USER_DATA: don’t care

 OPCODE 0x07: Convert signed to int ACCUMULATOR
Converts a signed value (MS-bit set for negative number) to a signed integer (2’s complement).
User must select accumulator and data size.
PARAM: sets the Accumulator and data size conversion:
 0=Use ACCUM_A, convert byte 0x10=Use ACCUM_B, convert byte
 1=Use ACCUM_A, convert 16-bit hword 0x11=Use ACCUM_B, convert 16-bit hword

2=Use ACCUM_A, convert 32-bit word 0x12=Use ACCUM_B, convert 32-bit word
USER_DATA: don’t care

 OPCODE 0x08: Convert int to signed ACCUMULATOR
Converts a signed integer (2’s complement) to a signed value (MS-bit set for negative number)
User must select accumulator and data size.
PARAM: sets the Accumulator and data size conversion:
 0=Use ACCUM_A, convert byte 0x10=Use ACCUM_B, convert byte
 1=Use ACCUM_A, convert 16-bit hword 0x11=Use ACCUM_B, convert 16-bit hword

2=Use ACCUM_A, convert 32-bit word 0x12=Use ACCUM_B, convert 32-bit word
USER_DATA: don’t care

 OPCODE 0x09: Set ACCUMULATOR value to Absolute value
Assumes a signed integer is in Accumulator. Uses 2’s complement if negative to make it positive signed integer.
User must select accumulator and data size.
PARAM: sets the Accumulator and data size:
 0=Use ACCUM_A, value is byte 0x10=Use ACCUM_B, value is byte
 1=Use ACCUM_A, value is 16-bit hword 0x11=Use ACCUM_B, value is 16-bit hword
 2=Use ACCUM_A, value is word (32-bits) 0x12=Use ACCUM_B, value is word (32-bits)
USER_DATA: don’t care

3.2 VARIABLES & USER_RAM

--- COUNTERS, REGS, RAM, FLAGS

 OPCODE 0x0A: Set/Update Variables
Set/Update Counters, User RAM Index
PARAM: identifies counter/register/index and selects update action:
 0x0: IO_Counter set to User Data 0x9: RAM_Index set to user data
 0x1: IO_Counter decremented 0x0a: RAM_Index set to Accum_A data(LS byte)
 0x2: IO_Delay set to User Data (milliSecs) 0x0b: RAM_Index decremented by 1
 0x3: Counter1 set to User Data 0x0c: RAM_Index incremented by 1
 0x4: Counter1 decremented 0x0d: RAM_Index decremented by 4 (word)
 0x5: Counter1 incremented 0x0e: RAM_Index incremented (4 bytes, 1 word)
 0x6: Counter2 set to User Data

Mpression Odyssey IoT Solutions Kits

 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits 9

© Mpression by Macnica Group

 0x7: Counter2 decremented
 0x8: Counter2 incremented

 0x0f: I2C_Adrs_Reg set to User Data (LS byte)
 0x10: I2C_byte_order set to User Data (0=MS Byte first [default], 1=LS Byte first)
 0x11: Counters and Ram Index reset to 0 (USER_DATA ignored)
 Includes: Counter1, Counter2, Ram Index
USER_DATA: value to set the counter/register (does not apply for increment/decrement)

 OPCODE 0x0B: Read USER_RAM to ACCUM
Reads from USER_RAM and loads read data into selected Accumulator
PARAM: selects data size and accumulator
 0x0=Byte: USER_RAM to ACCUM_A (LS-Byte)
 0x1=Half word (16 bits): USER_RAM to ACCUM_A (LS 16-bits)
 0x2=Word (32-bits): USER_RAM to ACCUM_A
 0x10=Byte: USER_RAM to ACCUM_B (LS-Byte)
 0x11=Half word (16 bits): USER_RAM to ACCUM_B (LS 16-bits)
 0x12=Word (32-bits): USER_RAM to ACCUM_B
USER_DATA -> USER_RAM Index to be read (index auto-increments to next byte)

 OPCODE 0x0C: Write byte to USER_RAM
Writes a byte to USER_RAM and then increments RAM Index
PARAM holds the source of the write data byte:
 0=USER_DATA (LS-Byte)
 1=ACCUM_A (LS-Byte)
 2=ACCUM_B (LS-Byte)
NOTE: RAM Index should be known or set PRIOR to this write command (reset default=0)

 OPCODE 0x0D: Write half word to USER_RAM
Writes a half word (16-bit value) to USER_RAM and then RAM index is incremented (+2)
PARAM: holds the source of the write data (16-bits):
 0=USER_DATA LS-16-bits
 1=ACCUM_A LS-16-bits
 2=ACCUM_B LS-16-bits
LS-byte is written first, then index incremented, then MS-byte
NOTE: RAM_Index should be known or set PRIOR to this write command (reset default=0)

 OPCODE 0x0E: Write word to USER_RAM
Writes a word (32-bit value) to USER_RAM
PARAM: holds the source of the write data word (32-bits)
 0=USER_DATA
 1=ACCUM_A
 2=ACCUM_B
USER_DATA: holds 32-bit write data
LS-byte is written first, incremented for each byte with last being MS-byte
NOTE: RAM_INDEX should be known or set PRIOR to this write command (reset default=0)

 OPCODE 0x0F: Write / Fill USER_RAM
Writes a value or pattern of bytes to USER_RAM – all 256 bytes
PARAM: holds the fill option:
 0=All zero’s
 1=ALL FF’s

Mpression Odyssey IoT Solutions Kits

10 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits

© Mpression by Macnica Group

 2=Incrementing pattern - starting with byte value in USER_DATA (LS-byte)
 3=Fill with byte value in USER_DATA (LS-byte)
USER_DATA: LS-byte holds initial byte/pattern byte (when PARAM=2 or 3)

3.3 ARITHMETIC

--- ADDITION

 OPCODE 0x11: Add (unsigned) USER_DATA to ACCUMULATOR
Adds Accumulator to User Data (unsigned data addition), then puts result in Accumulator.
User selects which accumulator.
PARAM sets Accumulator:
 0=ACCUM_A (default) 1=ACCUM_B
USER_DATA holds data (unsigned) to be added to accumulator

 OPCODE 0x12: Add (signed) USER_DATA to ACCUMULATOR
Adds Accumulator to User Data (signed data addition), then puts result in Accumulator.
User selects which accumulator and data size.
PARAM sets which Accumulator and data size:
 0=ACCUM_A, Byte (LS-Byte, signed) 0x10=ACCUM_B, Byte (LS-Byte, signed)
 1=ACCUM_A, Halfword (LS-16-bits, signed) 0x11=ACCUM_B, Halfword (LS-16-bits, signed)
 2=ACCUM_A, Word (32-bits, signed) 0x12=ACCUM_B, Word (32-bits, signed)
USER_DATA: don’t care

 OPCODE 0x13: Add (unsigned) ACCUMULATORS
Adds the data in the two accumulators together: ACCUM_A + ACCUM B (unsigned data addition)
PARAM sets Accumulator destination:
 0=ACCUM_A (default) 1=ACCUM_B
USER_DATA: don’t care

 OPCODE 0x14: Add (signed) ACCUMULATORS
Adds the data in the two accumulators together: ACCUM_A + ACCUM B (signed data addition)
PARAM sets Accumulator destination and data size:
 0=ACCUM_A, Byte (LS-Byte, signed) 0x10=ACCUM_B, Byte (LS-Byte, signed)
 1=ACCUM_A, Halfword (LS-16-bits, signed) 0x11=ACCUM_B, Halfword (LS-16-bits, signed)
 2=ACCUM_A, Word (32-bits, signed) 0x12=ACCUM_B, Word (32-bits, signed)
USER_DATA: don’t care

--- SUBTRACTION

 OPCODE 0x15: Subtract (unsigned) USER_DATA From ACCUMULATOR
Subtracts User data from Accumulator (unsigned data subtraction):
Accumulator (unsigned) - USER_DATA (unsigned) -> Accumulator (unsigned)
PARAM sets which Accumulator to use:
 0=ACCUM_A (default) 1=ACCUM_B
USER_DATA: don’t care

 OPCODE 0x16: Subtract (signed) USER_DATA from ACCUMULATOR
Subtracts User data from Accumulator (signed data subtraction):
Accumulator (signed) - USER_DATA (signed) -> Accum_A or B (signed)
PARAM sets which Accumulator to use and data size:
 0=ACCUM_A, Byte (LS-Byte, signed) 0x10=ACCUM_B, Byte (LS-Byte, signed)

Mpression Odyssey IoT Solutions Kits

 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits 11

© Mpression by Macnica Group

 1=ACCUM_A, Halfword (LS-16-bits, signed) 0x11=ACCUM_B, Halfword (LS-16-bits, signed)
 2=ACCUM_A, Word (32-bits, signed) 0x12=ACCUM_B, Word (32-bits, signed)
USER_DATA: holds data to be subtracted from accumulator

 OPCODE 0x17: Subtract (unsigned) ACCUMULATOR From USER_DATA
Subtracts Accumulator from User Data (unsigned data subtraction):
USER_DATA (unsigned) - Accum_A (unsigned) -> Accum_A or B (unsigned)
PARAM sets Accumulator destination:
 0=ACCUM_A (default) 1=ACCUM_B
USER_DATA: holds unsigned data to subtract Accumulator from

 OPCODE 0x18: Subtract (signed) ACCUMULATOR from USER_DATA
USER_DATA (signed) - Accumulator (signed) -> Accum_A or B (signed)
PARAM sets which Accumulator to use and data size:
 0=ACCUM_A, Byte (LS-Byte, signed) 0x10=ACCUM_B, Byte (LS-Byte, signed)
 1=ACCUM_A, Halfword (LS-16-bits, signed) 0x11=ACCUM_B, Halfword (LS-16-bits, signed)
 2=ACCUM_A, Word (32-bits, signed) 0x12=ACCUM_B, Word (32-bits, signed)
USER_DATA: holds signed data to subtract Accumulator from

 OPCODE 0x19: Subtract (unsigned) ACCUMULATORS
Subtracts unsigned data in one accumulator from unsigned data in another
PARAM:
 0=ACCUM_A - ACCUM_B (unsigned) -> Accum_A (unsigned)
 1=ACCUM_B - ACCUM_A (unsigned) -> Accum_B (unsigned)
USER_DATA: don’t care

 OPCODE 0x1A: Subtract (signed) ACCUMULATORS
Subtracts signed data in one accumulator from signed data in another
PARAM sets Accumulator destination and data size:
 0x0: ACCUM_A – ACCUM_B –> ACCUM_A, Byte (LS-Byte, signed)
 0x1: ACCUM_A – ACCUM_B –> ACCUM_A,, Halfword (LS-16-bits, signed)
 0x2: ACCUM_A – ACCUM_B –> ACCUM_A,, Word (32-bits, signed)
 0x10: ACCUM_B – ACCUM_A –> ACCUM_B, Byte (LS-Byte, signed)
 0x11: ACCUM_B – ACCUM_A –> ACCUM_B, Halfword (LS-16-bits, signed)
 0x12: ACCUM_B – ACCUM_A –> ACCUM_B, Word (32-bits, signed)
USER_DATA: don’t care

--- MULTIPLICATION (plus ADDITION/SUBTRACTION option)

 NOTES: For the following multiplication opcodes:
 -If user does NOT want param byte value added to the multiplication result, set PARAM=0.
 -To subtract a value from a signed multiplication result, set PARAM to a negative number.
 In this case a negative number is created by setting the MS-bit (simple signed number).
 Example: To subtract 5 from multiplication product, PARAM = 0x85 (0x5 with MS-bit set)

 ---ACCUM A

 OPCODE 0x20: Mult (unsigned) ACCUM_A by USER_DATA, Add PARAM
 [Accum_A x USER_DATA] (unsigned) + PARAM (unsigned) -> Accum_A (unsigned)

 OPCODE 0x21: Mult (unsigned) ACCUM_A by USER_DATA, Subtract PARAM
[Accum_A x USER_DATA] (unsigned) - PARAM (unsigned) -> Accum_A (unsigned

Mpression Odyssey IoT Solutions Kits

12 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits

© Mpression by Macnica Group

 OPCODE 0x22: Mult (signed byte) ACCUM_A by USER_DATA, Add PARAM
[Accum_A x USER_DATA] (signed LS-byte) + PARAM (signed LS-byte) -> Accum_A (LS-byte)

 OPCODE 0x23: Mult (signed halfword: 16b) ACCUM_A by USER_DATA, Add PARAM
[Accum_A x USER_DATA] (signed LS-16b) + PARAM (signed LS-16b) -> Accum_A (LS-16b)

 OPCODE 0x24: Mult (signed word: 32b) ACCUM_A by USER_DATA, Add PARAM
[Accum_A (signed 32b) x USER_DATA (signed 32b)] + PARAM (signed 32b) -> Accum_A

---ACCUM B

 OPCODE 0x25: Mult (unsigned) ACCUM_B by USER_DATA, Add PARAM
[Accum_B x USER_DATA] (unsigned) + PARAM (unsigned) -> Accum_B (unsigned)

 OPCODE 0x26: Mult (unsigned) ACCUM_B by USER_DATA, Subtract PARAM
[Accum_B x USER_DATA] (unsigned) + PARAM (unsigned) -> Accum_B (unsigned)

 OPCODE 0x27: Mult (signed byte) ACCUM_B by USER_DATA, Add PARAM
[Accum_B x USER_DATA] (signed LS-byte) + PARAM (signed LS-byte) -> Accum_B (LS-byte)

 OPCODE 0x28: Mult (signed halfword: 16b) ACCUM_B by USER_DATA, Add PARAM
[Accum_B x USER_DATA] (signed LS-16b) + PARAM (signed LS-16b) -> Accum_B (LS-16b)

 OPCODE 0x29: Mult (signed word: 32b) ACCUM_B by USER_DATA, Add PARAM
[Accum_B (signed 32b) x USER_DATA (signed 32b)] + PARAM (signed 32b) -> Accum_B

 ---Both Accumulators

 OPCODE 0x2A: Mult (unsigned) ACCUMULATORS
Multiply data in one accumulator by data in the other accumulator (unsigned multiplication)
Accum_A (unsigned) x ACCUM_B (unsigned) -> Accum_A or B (unsigned)
PARAM: sets which Accumulator to place result (destination):
 0=ACCUM_A (default) 1=ACCUM_B
USER_DATA: don’t care

 OPCODE 0x2B: Mult (signed) ACCUMULATORS
Multiply data in one accumulator by data in the other accumulator (signed multiplication)
Accum_A (signed) x ACCUM_B (signed) -> Accum_A or B (signed)
PARAM sets which Accumulator is destination and data size:
 0=ACCUM_A, Byte (LS-Byte, signed) 0x10=ACCUM_B, Byte (LS-Byte, signed)
 1=ACCUM_A, Halfword (LS-16-bits, signed) 0x11=ACCUM_B, Halfword (LS-16-bits, signed)
 2=ACCUM_A, Word (32-bits, signed) 0x12=ACCUM_B, Word (32-bits, signed)
USER_DATA: don’t care

--- DIVISION (plus Addition/Subtraction option)

 NOTES: For the following division opcodes:
 -If user does NOT want param byte value added to the division result, set PARAM=0.
 -To subtract a value from a signed division result, set PARAM to a negative number.
 In this case a negative number is created by setting the MS-bit (simple signed number).
 Example: To subtract 5 from the division result, PARAM = 0x85 (0x5 with MS-bit set)

 ---ACCUM A

Mpression Odyssey IoT Solutions Kits

 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits 13

© Mpression by Macnica Group

 OPCODE 0x30: Divide (unsigned) ACCUM_A by USER_DATA, Add PARAM
[Accum_A ÷ USER_DATA] (unsigned) + PARAM (unsigned) -> Accum_A (unsigned)

 OPCODE 0x31: Divide (unsigned) ACCUM_A by USER_DATA, Subtract PARAM
[Accum_A ÷ USER_DATA] (unsigned) - PARAM (unsigned) -> Accum_A (unsigned)

 OPCODE 0x32: Divide (signed byte) ACCUM_A by USER_DATA, Add PARAM
[Accum_A ÷ USER_DATA] (signed LS-byte) + PARAM (signed LS-byte) -> Accum_A (signed LS-byte)

 OPCODE 0x33: Divide (signed halfword: 16b) ACCUM_A by USER_DATA, Add PARAM
[Accum_A ÷ USER_DATA] (signed LS-16b) + PARAM (signed LS-16b) -> Accum_A (signed LS-16b)

 OPCODE 0x34: Divide (signed word: 32b) ACCUM_A by USER_DATA, Add PARAM
[Accum_A ÷ USER_DATA] (signed 32b) + PARAM (signed 32b) -> Accum_A (signed 32b)

---ACCUM B

 OPCODE 0x35: Divide (unsigned) ACCUM_B by USER_DATA, Add PARAM
[Accum_B ÷ USER_DATA] (unsigned) + PARAM (unsigned) -> Accum_B (unsigned)

 OPCODE 0x36: Divide (unsigned) ACCUM_B by USER_DATA, Subtract PARAM
[Accum_B ÷ USER_DATA] (unsigned) - PARAM (unsigned) -> Accum_B (unsigned)

 OPCODE 0x37: Divide (signed byte) ACCUM_B by USER_DATA, Add PARAM
[Accum_B ÷ USER_DATA] (signed LS-byte) + PARAM (signed LS-byte) -> Accum_B (signed LS-byte)

 OPCODE 0x38: Divide (signed halfword: 16b) ACCUM_B by USER_DATA, Add PARAM
[Accum_B ÷ USER_DATA] (signed LS-16b) + PARAM (signed LS-16b) -> Accum_B (signed LS-16b)

 OPCODE 0x39: Divide (signed word: 32b) ACCUM_B by USER_DATA, Add PARAM
[Accum_B ÷ USER_DATA] (signed 32b) + PARAM (signed 32b) -> Accum_B (signed 32b)

 ---Both Accumulators

 OPCODE 0x3A: Divide (unsigned) ACCUMULATORS
Divides the data in one accumulator from the data in the other accumulator (unsigned division)
Accum_A (unsigned) ÷ Accum_B (unsigned) -> Accum_A (unsigned), or,
Accum_B (unsigned) ÷ Accum_A (unsigned) -> Accum_B (unsigned)
PARAM sets Accumulator order/destination:
 0=ACCUM_A ÷ ACCUM_B -> ACCUM_A (default)
 1=ACCUM_B ÷ ACCUM_A -> ACCUM_B
USER_DATA: don’t care

 OPCODE 0x3B: Divide (signed) ACCUMULATORS
Divides the data in one accumulator from the data in the other accumulator (signed division)
If destination is Accum_A: Accum_A (signed) ÷ ACCUM_B (signed) -> Accum_A (signed)
If destination is Accum_B: Accum_B (signed) ÷ ACCUM_A (signed)-> Accum_B (signed)
PARAM sets which Accumulator destination and data size:
 0=ACCUM_A, Byte (LS-Byte, signed) 0x10=ACCUM_B, Byte (LS-Byte, signed)
 1=ACCUM_A, Halfword (LS-16-bits, signed) 0x11=ACCUM_B, Halfword (LS-16-bits, signed)
 2=ACCUM_A, Word (32-bits, signed) 0x12=ACCUM_B, Word (32-bits, signed)
USER_DATA: don’t care

Mpression Odyssey IoT Solutions Kits

14 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits

© Mpression by Macnica Group

3.4 BIT/LOGICAL OPERATIONS & BYTE SWAP

--- MASK, SHIFT – USER DATA

 OPCODE 0x40: ACCUM_A AND USER_DATA, Shift Right PARAM
(Accum A AND’d with User Data, then shifted right by number of bits indicated in PARAM)
[Accum_A & USER_DATA] shifted right by PARAM (unsigned) -> Accum_A
Note: If PARAM=0, no shift

 OPCODE 0x41: ACCUM_A AND USER_DATA, Shift Left PARAM
(Accum A AND’d with User Data, then shifted left by number of bits indicated in PARAM)
[Accum_A & USER_DATA] shifted left by PARAM (unsigned) -> Accum_A
Note: If PARAM=0, no shift

 OPCODE 0x42: ACCUM_A OR USER_DATA, Shift Right PARAM
(Accum A OR’d with User Data, then shifted right by number of bits indicated in PARAM)
[Accum_A OR USER_DATA] shifted right by PARAM (unsigned) -> Accum_A
Note: If PARAM=0, no shift

 OPCODE 0x43: ACCUM_A OR USER_DATA, Shift Left PARAM
(Accum A OR’d with User Data, then shifted left by number of bits indicated in PARAM)
[Accum_A OR USER_DATA] shifted left by PARAM (unsigned) -> Accum_A
Note: If PARAM=0, no shift

 OPCODE 0x44: ACCUM_A XOR USER_DATA, Shift Right PARAM
(Accum A Exclusive OR’d with User Data, then shifted right by number of bits indicated in PARAM)
[Accum_A XOR USER_DATA] shifted right by PARAM (unsigned) -> Accum_A
Note: If PARAM=0, no shift

 OPCODE 0x45: ACCUM_A XOR USER_DATA, Shift Left PARAM
(Accum_A Exclusive OR’d with User Data, then shifted left by number of bits indicated in PARAM)
[Accum_A XOR USER_DATA] shifted left by PARAM (unsigned) -> Accum_A
Note: If PARAM=0, no shift

 OPCODE 0x46: ACCUM_A AND ACCUM_B
Accum_A AND’d with ACCUM_B
[Accum_A & ACCUM_B] -> Accum_A
PARAM and USER_DATA: don’t care

 OPCODE 0x47: ACCUM_A OR ACCUM_B
Accum_A OR’d with ACCUM_B
[Accum_A OR ACCUM_B] -> Accum_A
PARAM and USER_DATA: don’t care

 OPCODE 0x48: ACCUM_A XOR ACCUM_B
Accum_A Exclusive-OR’d with ACCUM_B
[Accum_A XOR ACCUM_B] -> Accum_A
PARAM and USER_DATA: don’t care

 --- BYTE SWAP – ENDIANESS

 OPCODE 0x4C: Byte Swap 32-bits ACCUM_A

Mpression Odyssey IoT Solutions Kits

 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits 15

© Mpression by Macnica Group

Reverse order of all 4 bytes in ACCUM_A
Accum_A: [Byte3 | Byte2 | Byte1 | Byte 0] -> [Byte0 | Byte1 | Byte2 | Byte3]
PARAM and USER_DATA: don’t care

 OPCODE 0x4D: Byte Swap 16-bits ACCUM_A
Reverse order highest 2 bytes and reverse order of lower 2 bytes in ACCUM_A
Accum_A: [Byte3 | Byte2 | Byte1 | Byte 0] -> [Byte2 | Byte3 | Byte0 | Byte1]
PARAM and USER_DATA: don’t care

 OPCODE 0x4E: Halfword Swap ACCUM_A
Swap high 16-bits with lower 16-bits in ACCUM_A
Accum_A: [Byte3 | Byte2 | Byte1 | Byte 0] -> [Byte1 | Byte0 | Byte3 | Byte2]
PARAM and USER_DATA: don’t care

3.5 MISC CONTROL, DELAY, LED

 OPCODE 0x50: Delay for USER_DATA x 1 mS *
Delay for period = USER_DATA x 1 millisecond (1/1000 sec increments)
PARAM: don’t care
USER_DATA: Delay (number of milliseconds)

 OPCODE 0x51: LED ON for delay period: USER_DATA x 1 mS *
LED ON, then delay, then LED OFF. Delay specified by USER_DATA
PARAM: don’t care
USER_DATA: Delay (number of milliseconds)

 OPCODE 0x52: LED flash: Flash frequency = USER_DATA x 1 mS, Count *
LED flashes at selected frequency. Flash period = USER_DATA x 1 millisecond),
PARAM: flash count (number of flash cycles)
USER_DATA: Flash period (number of milliseconds)
NOTE: Minimum is 200 Milliseconds. If lower, it will be forced to 200 mSecs: 1/5 second)

*NOTE: Not a background operation, will delay subsequent processing

3.6 PROGRAM CONTROL

--- COUNTERS, REGS, RAM INDEX, FLAGS

 OPCODE 0x60: Reset Offload State Machine
PARAM and USER_DATA = Reserved, set=0
Resets Accumulators, counters, flags, command instruction sequence, etc.
The following reset actions will take place:
 Accumulators, both set = 0
 Counter1, Counter2, IO_counter, Ram Index set = 0
 I2C_Device_Adrs, I2C_byte_order, Compare flag set = 0
 The list of commands used for branching will be cleared
 (cannot branch back before this command was executed)

NOTE: This reset also occurs when the APP first runs an offload command

--- BRANCHES

Mpression Odyssey IoT Solutions Kits

16 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits

© Mpression by Macnica Group

 NOTE: Branching uses the value in PARAM to determine how far to jump back/forward.
 That is to say, the “branch value” is the number of offload commands forward or backward
 that the “instruction pointer” will move to. A simple signed byte is used for branch value.
 Users are expected to branch within their range of instructions.
 For example: To jump 4 commands back, use -4 in PARAM with simple signed value:
 Set PARAM=0x84, (0x04 with MS-bit set to indicate negative – backward jump).

 OPCODE 0x68: Branch Always
Always branches.
PARAM: holds relative branch value: forward or backward, number of offload commands.
 PARAM byte is a signed value, MS-bit = 1 for negative (branch backwards).
 For example: To branch back 2 commands, set PARAM = 0x84 (0x04 with MS-bit set to go back)
NOTE: If PARAM=0, Special Case: continues to loop on this instruction indefinitely
USER_DATA: don’t care

 OPCODE 0x69: Branch when Counter Not Zero
Branches when the selected counter/index is NOT equal to zero.
PARAM: holds branch value (number of commands to jump).
 PARAM byte is signed value, MS-bit = 1 for negative (branch backwards).
 NOTE: If PARAM=0, NOP
USER_DATA: selects counter to compare to zero:
 0: IO_Counter not=0 3,4: Reserved
 1: Counter1 not=0 5: RAM_Index not=0
 2: Counter2 not=0

 OPCODE 0x6A: Branch on Compare Flag Set
Branch when compare flag is set (number of commands to jump).
 PARAM byte is signed value, MS-bit = 1 for negative (branch backwards).
 NOTE: If PARAM=0, NOP
USER_DATA: don’t care

--- COMPARES & BRANCH-ON-COMPARE

NOTES:
For the following compares, the branching is determined are the same as above. That is to say, the “branch value” is
the number of offload commands forward or backward that the “instruction pointer” will move to. A simple signed
byte is used for branch value.

The “compare flag” is set TRUE or FALSE according to the compare with the following commands.

 ---USER_DATA & ACCUM_A

 OPCODE 0x70: Compare: USER_DATA Not Equal ACCUM_A
Compares USER_DATA value to ACCUM_A. Will branch when “NOT EQUAL”=TRUE as an option.
PARAM: Holds the branch value (a simple signed value). 0=No branch
USER_DATA: first operand in compare.

 OPCODE 0x71: Compare: USER_DATA Equal ACCUM_A
Compares USER_DATA value to ACCUM_A. Will branch when “EQUAL”=TRUE as an option.
PARAM: Holds the branch value (a simple signed value). 0=No branch
USER_DATA: first operand in compare.

Mpression Odyssey IoT Solutions Kits

 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits 17

© Mpression by Macnica Group

 OPCODE 0x72: Compare: USER_DATA Greater Than ACCUM_A
Compares USER_DATA value to ACCUM_A. Will branch when “GREATER THAN”=TRUE as an option.
PARAM: Holds the branch value (a simple signed value). 0=No branch
USER_DATA: first operand in compare.

 OPCODE 0x73: Compare: USER_DATA Less Than ACCUM_A
Compares USER_DATA value to ACCUM_A. Will branch when “LESS THAN”=TRUE as an option.
PARAM: Holds the branch value (a simple signed value). 0=No branch
USER_DATA: first operand in compare.

 OPCODE 0x74: Compare: USER_DATA Greater Than Or Equal ACCUM_A
Compares USER_DATA value to ACCUM_A. Will branch when “GREATER THAN OR EQUAL”=TRUE as an option.
PARAM: Holds the branch value (a simple signed value). 0=No branch
USER_DATA: first operand in compare.

 OPCODE 0x75: Compare: USER_DATA Less Than Or Equal ACCUM_A
Compares USER_DATA value to ACCUM_A. Will branch when “LESS THAN OR EQUAL”=TRUE as an option.
PARAM: Holds the branch value (a simple signed value). 0=No branch
USER_DATA: first operand in compare.

---ACCUM_A and ACCUM_B

 OPCODE 0x76: Compare: ACCUM_A Not Equal ACCUM_B
Compares ACCUM_A to ACCUM_B contents. Will branch when “NOT EQUAL”=TRUE as an option.
PARAM: Holds the branch value (a simple signed value). 0=No branch
USER_DATA: don’t care

 OPCODE 0x77: Compare: ACCUM_A Equal ACCUM_B
Compares ACCUM_A to ACCUM_B contents. Will branch when “EQUAL”=TRUE as an option.
PARAM: Holds the branch value (a simple signed value). 0=No branch
USER_DATA: don’t care

 OPCODE 0x78: Compare: ACCUM_A Greater Than ACCUM_B
Compares ACCUM_A to ACCUM_B. Will branch when “GREATER THAN”=TRUE as an option.
PARAM: Holds the branch value (a simple signed value). 0=No branch
USER_DATA: don’t care

 OPCODE 0x79: Compare: ACCUM_A Less Than ACCUM_B
Compares ACCUM_A to ACCUM_B. Will branch when “LESS THAN”=TRUE as an option.
PARAM: Holds the branch value (a simple signed value). 0=No branch
USER_DATA: don’t care

 OPCODE 0x7A: Compare: ACCUM_A Greater Than or Equal ACCUM_B
Compares ACCUM_A to ACCUM_B contents. Will branch when “GREATER THAN OR EQUAL”=TRUE as an option.
PARAM: Holds the branch value (a simple signed value). 0=No branch
USER_DATA: don’t care

 OPCODE 0x7B: Compare: ACCUM_A Less Than or Equal ACCUM_B
Compares ACCUM_A to ACCUM_B contents. Will branch when “LESS THAN OR EQUAL”=TRUE as an option.
PARAM: Holds the branch value (a simple signed value). 0=No branch

 USER_DATA: don’t care

Mpression Odyssey IoT Solutions Kits

18 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits

© Mpression by Macnica Group

3.7 INPUT-OUTPUT

 --- I2C READ

 OPCODE 0x80: I2C Read bytes to ACCUM_A
Reads I2C byte(s) to ACCUM_A. Can read 1, 2 or 4 bytes.
PARAM holds Register offset/counter action following read:
 0=No offset or IO_Counter change
 1=Increment I2C address register offset after transfer
USER_DATA: holds I2C device 7-bit address, I2C device register offset,
 IO_Counter initial value (transfer count: 1, 2 or 4)
 BYTE 0 (LS-Byte): I2C device 7-bit address (this sets I2C_Adrs_Reg)
 BYTE 1 (Next LS-byte): I2C device register offset (2nd I2C byte), (Sets I2C_Reg_Offset)
 BYTE 2 (Next byte): Transfer count (IO_Counter) initial value
 BYTE 3 (MS-Byte): Reserved, set=0
NOTES:

 MUST HAVE BYTE ORDER SET in I2C_byte_order when reading multiple bytes:
 Can use opcode 0x0A (Set/Update Vars) to set byte order.
 I2C Byte order: 0=MSB first (default), 1=LS Byte first.
 SiLabs Si7020 part (Temp/Humid) is MSB first
 Silabs Si1147 part (Light/HRM/Prox)is LSB first

 Early Odyssey FPGA examples were MSB first (but is programmable)

 OPCODE 0x81: I2C Read bytes to RAM
Reads I2C byte(s), up to 256 to User_RAM. (Array of 256 available)
PARAM holds register offset/RAM_index/counter action following read:
 0=No offset or RAM_Index or IO_Counter change: single read
 1=Increment I2C register offset (I2C_Reg_Offset), Increment RAM_Index,
 Decrement IO_Counter
 2=Increment RAM_Index, Decrement IO_Counter, (No change to I2C_Reg_Offset)
 3=Decrement RAM_Index, Decrement IO_Counter, (No change to I2C_Reg_Offset)
USER_DATA holds: I2C device 7-bit address, I2C Device register offset,
 IO_Counter initial value (transfer count) and RAM_Index initial value:
 LS-BYTE: I2C device 7-bit address (Sets I2C_Adrs_Reg)
 BYTE 1 (Next LS-byte): I2C device register offset (2nd I2C byte), (Sets I2C_Reg_Offset)
 BYTE 2 (Next byte): Transfer count (IO_Counter) initial value
 BYTE 3 (MS-Byte): RAM_Index initial value
NOTES:

 Must set IO_delay (time between transfers), or assume reset value of 1 second.

 MUST HAVE BYTE ORDER SET in I2C_byte_order when reading multiple bytes:
 Can use opcode 0x0A (Set/Update Vars) to set byte order and/or IO_delay time.
 I2C Byte order: 0=MS Byte first (default), 1=LS Byte first
 SiLabs Si7020 part (Temp/Humid) is MSB first
 Silabs Si1147 part (Light/HRM/Prox)is LSB first

 Early Odyssey FPGA examples were MSB first (but is programmable)

--- I2C WRITE

 OPCODE 0x85: I2C Write byte from USER_DATA
I2C Write a single byte to device from USER_DATA (LS-Byte).
PARAM holds I2C register offset action following read:

Mpression Odyssey IoT Solutions Kits

 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits 19

© Mpression by Macnica Group

 0=No I2C register offset
 1=Increment I2C register offset after transfer
USER_DATA holds: I2C device 7-bit address, I2C device register offset,
 IO_Counter (transfer count) initial value:
 LS-BYTE: I2C device 7-bit address (this sets I2C_Adrs_Reg)
 BYTE 1 (Next LS-byte): I2C device register offset (2nd I2C byte), Sets I2C_Reg_Offset initial value
 BYTE 2 (Next byte): Data byte to be written
 BYTE 3 (MS-Byte): Reserved, set=0
NOTES:

 MUST HAVE BYTE ORDER SET in I2C_byte_order when reading multiple bytes:
 Can use opcode 0x0A (Set/Update Vars) to set byte order.
 I2C Byte order: 0=MS Byte first (default), 1=LS Byte first
 SiLabs Si7020 part (Temp/Humid) is MSB first
 Silabs Si1147 part (Light/HRM/Prox)is LSB first

 Early Odyssey FPGA examples were MSB first (but is programmable)

 OPCODE 0x86: I2C Write byte(s) from ACCUM_A
I2C Write bytes (1, 2 or 4) to I2C device from ACCUM_A
PARAM holds I2C register offset, counter action following read:
 0=No I2C register offset or IO_Counter change
 1=Increment I2C register offset (I2C_Reg_Offset)
USER_DATA holds: I2C device 7-bit address, I2C device register offset,
 IO_Counter (transfer count) initial value:
 LS-BYTE: I2C device 7-bit address (this sets I2C_Adrs_Reg)
 BYTE 1 (Next LS-byte): I2C device register offset (2nd I2C byte), Sets I2C_Reg_Offset initial value
 BYTE 2 (Next byte): Transfer byte count (1, 2 or 4 only), Sets IO_Counter initial value
 BYTE 3 (MS-Byte): Reserved, set=0
NOTES:

 ACCUM_A holds: Byte(s) to be written: LS-Byte, LS-halfword or all 4 bytes (LS byte first)

 MUST HAVE BYTE ORDER SET in I2C_byte_order when reading multiple bytes:
 Can use opcode 0x0A (Set/Update Vars) to set byte order.
 I2C Byte order: 0=MS Byte first (default), 1=LS Byte first
 SiLabs Si7020 part (Temp/Humid) is MSB first
 Silabs Si1147 part (Light/HRM/Prox)is LSB first

 Early Odyssey FPGA examples were MSB first (but is programmable)

 OPCODE 0x87: I2C Write byte(s) from RAM
Writes I2C byte(s) to device from User_RAM. Array of 256 user RAM bytes available.
PARAM holds offset/RAM_index/counter action following write:
 0=No offset or RAM_Index or IO_Counter change: single write
 1=Increment I2C register offset (I2C_Reg_Offset), Increment RAM_Index,
 Decrement IO_Counter
 2=Increment RAM_Index, (No change to I2C_Reg_Offset)
 3=Decrement RAM_Index, (No change to I2C_Reg_Offset)
USER_DATA holds: I2C device 7-bit address, I2C Device register offset,
 IO_Counter (transfer count) initial value and RAM_Index initial value:
 LS-BYTE: I2C device 7-bit address (Sets I2C_Adrs_Reg)
 BYTE 1 (Next LS-byte): I2C device register offset (2nd I2C byte), (Sets I2C_Reg_Offset)
 BYTE 2 (Next byte): Transfer count (IO_Counter) initial value
 BYTE 3 (MS-Byte): RAM_Index initial value
NOTES:
Must set IO_delay (time between transfers), or assume reset value of 1 sec.
MUST HAVE BYTE ORDER SET in I2C_byte_order when reading multiple bytes:

Mpression Odyssey IoT Solutions Kits

20 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits

© Mpression by Macnica Group

 Can use opcode 0x0A (Set/Update Vars) to set byte order and/or IO_delay.
 I2C Byte order: 0=MS Byte first (default), 1=LS Byte first
 SiLabs Si7020 part (Temp/Humid) is MSB first

3.8 MISCELLANEOUS / OTHER

 OPCODE 0xE1: Copy Variable to Accumulator

Copies a counter, RAM index, other variables to an accumulator.
PARAM selects the destination Accumulator:
 0: ACCUM_A
 1: ACCMU_B
USER_DATA: selects the variable to be copied

 0: IO_counter 4: I2C_adrs_reg
 1: Counter1 5: I2C_byte_order
 2: Counter2 6: IO_delay
 3: User_ram_index

3.9 TEST & DIAGNOSTICS

 OPCODE 0xF1: Setup Test OPCODE
Sets a value for “test OPCODE” to be used when running “Run Test Command” (opcode below).
PARAM: don’t care
USER_DATA (LS-byte) holds the value for the test OPCODE byte

 OPCODE 0xF2: Setup Test PARAM
Sets a value for “test PARAM” to be used when running “Run Test Command” (opcode below).
PARAM: don’t care
USER_DATA (LS-byte) holds the value for the test PARAM byte

 OPCODE 0xF3: Setup Test USER_DATA
Sets a value for “test USER_DATA” to be used when running “Run Test Command” (opcode below).
PARAM: don’t care
USER_DATA holds the value for the test USER_DATA

 OPCODE 0xF4: Run Test Command
This command assumes that a test opcode and test values are setup for PARAM and USER_DATA with the “Setup
Test OPCODE”, “Setup Test PARAM” and “Setup Test USER_DATA” commands.
This command will then run the offload command created by combining them.
PARAM and USER_DATA for this opcode: don’t care

Mpression Odyssey IoT Solutions Kits

 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits 21

© Mpression by Macnica Group

Appendix A: Offload Processing
Considerations Using Math

As with any compiler, users must take care and be clear what size their data is when working with signed math. For

example, signed arithmetic must use operands the same size. This is due to the position of the sign bit (and 2’s

complement conversions).

Likewise, when setting up a return field (for a button) in the Web App to display data for a personality, the size and

type of integer must be set correctly.

Here are the sizes users may work with:

o Signed Word: 32-bit signed (INT32) – cannot combine sizes for math

o Signed Halford: 16-bit signed (INT16) – cannot combine sizes for math

o Signed Byte: 8-bit signed (INT8) – cannot combine sizes for math

o Unsigned Word: 32-bit unsigned (UINT32) – can combine sizes (not signed)

o Unsigned Halfword: 16-bit unsigned (UINT16) – can combine sizes (not signed)

o Unsigned Byte: 8-bit unsigned (UINT8) – can combine sizes (not signed)

See the opcode available for converting signed integer sizes:

 OPCODE 0x06: Convert signed data size in ACCUMULATOR

An example would be getting a byte of signed data from a sensor and multiplying it by a signed word. The byte

would need to be converted to a signed word first.

To make things easier for the user, a simple signed value is used for user entry. This is merely adding a sign bit to

any value to make it a negative number. The state machine then converts it to a standard signed integer (2’s

complement) for doing math internally.

Simple signed value

User wants to load the accumulator with a byte value of -4.

Take 0x04 and add the sign bit (MS-bit) to the byte value to get 0x84.

For a 16-bit value: 0x8004

For a 32-bit word: 0x80000004

A simple signed value should be used for negative numbers for the following opcodes and inputs:

 Opcode 0x02: Load Accumulator with User Data (signed)

 All Math opcodes where User Data is an input for signed math

 All signed Multiplication and Division opcodes for generating a negative PARAM byte

 For branch values (byte) – all opcodes that have branches (usually the PARAM byte, negative for branching back)

Mpression Odyssey IoT Solutions Kits

22 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits

© Mpression by Macnica Group

Appendix B: New Personalities & Example
Entries

Here are two new personalities created with offload commands along with tables showing the command entries:

Temp Collection and Custom Command Test. Users can build and/or modify these personalities using the Web Application.

Users can learn a lot by looking at the Temp Collection Personality (I2C looped collection to RAM, math conversion, timed delays,

loops using branching, led flashing, auto-indexing RAM, etc).

1. Temp Collection Personality
 Loop collects several timed samples of raw temperature data via I2C, converts to Fahrenheit and stores in

User RAM

 One button displays Fahrenheit temperature values. It auto-indexes the User RAM so the same button can
continue to read out collected temperatures (in Fahrenheit).

 A second button converts samples to Celsius and displays the temperature. It auto-indexes the User RAM so
the same button can continue to read out collected temperatures (in Celsius).

 Public example collects 8 samples, 2 seconds apart. Users can copy and edit the personality to collect over
seconds/hours/days and collect up to 256 samples (256 bytes user RAM).

 LED lights briefly when sampling and for 4 seconds when done.
NOTES:

Runs immediately upon entering personality (“Setup Commands” run first).
The buttons use the same index, so if a user uses both buttons, they will index, showing different samples.
If the user wishes to enter data for timing or number of samples, they can create a separate small
personality that enters and saves these values, then edit the existing personality to use the data. Data can
be left unchanged between personalities (will want to eliminate the “reset all” command below)

TIP: Putting a finger on the temp sensor (white top) during sampling will help collect a variation of temperature
readings.

Example Usage:

 Select “Temp Collection” personality from list (starts immediately and buttons are disabled)
-See LED flashing every 2 seconds – at each sampling of temperature

 Gently put finger on temp sensor (white top) after the 1st or 2nd flash, until 6th flash or so

 After 8 samples/flashes, the LED stays lit for 4 seconds indicating the temperature collection is complete
-Buttons are now enabled

 Press either button repeatedly to display the 8 samples in order (Fahrenheit or Celsius)
-Each button uses the same samples and auto-indexes to the next, so 8 total button presses will display
-After 8 presses, the display will show whatever is in user ram after 8th location

NOTE: See the list of commands below to understand how to do loops (using branching), LED control, I2C I/O and
delays.

Temp Collection Command Entries
Values entered or selected in Web Application are highlighted

Setup Commands (15 Max)

Offload
CMD type

Opcode Name or
Operation

Opcode
value

Parameter
byte

Write
source

User Data
word

Notes

Command
type field

 I2C device
adrs field

Register
adrs field

Fixed or
Entry field

Fixed write
data field

Mpression Odyssey IoT Solutions Kits

 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits 23

© Mpression by Macnica Group

Offload CMD Reset state machine 0x60 0x00 Fixed 0x00 Reset all: Accum, counters, RAM index…

Offload CMD Set vars: set Counter1 0x0a 0x03 Fixed 0x08 Counter 1 set = 0x08 (loop counter)

Offload CMD LED on .25 secs 0x51 0x00 Fixed 0x100 LED On .25 secs (256 mS)

Offload CMD I2C read 2 bytes to Accum A 0x80 0x00 Fixed 0x0002e340 I2C read Temp reg, I2C adrs 0x40, reg offset
0xE3, 2 bytes

Offload CMD Mult Accum A x User Data 0x20 0x00 Fixed 0x3dc7 Accum A x 0x3DC7, + 0

Offload CMD Divide Accum A by User
Data

0x31 0x35 Fixed 0x320000 Accum A ÷ 0x320000, + 0x35

Offload CMD Write byte to User RAM 0x0c 0x01 Fixed 0x00 Write Accum A LS-byte to RAM, increment
RAM index

Offload CMD Delay 0x50 0x00 Fixed 0x800 Delay 2 secs (2048 mS)

Offload CMD Set vars: decrement Counter1 0x0a 0x04 Fixed 0x00 Decrement Counter 1

Offload CMD Branch if Counter1 not=0 0x69 0x87 Fixed 0x01 Branch if Counter 1 not = 0, back 7
commands (to the LED On cmd)

Offload CMD Set vars: reset counters, index 0x0a 0x11 Fixed 0x00 Reset Counters, RAM index = 0

Offload CMD LED on 2 secs 0x51 0x00 Fixed 0x800 LED On 2 secs (2048 mS) – indicate DONE

Button Commands (5 Max each)

Offload
CMD type

Opcode Name

Opcode
value

Parameter
byte

Write
source

User Data
word

Notes / Return field

Command
type field

 I2C device
adrs field

Register
adrs field

Fixed or
Entry field

Fixed write
data field

Button 1

Button Text: Stored Temps F
Return Field Details: ON, uint8, decimal, “F”
Entry Field Details: OFF

Visible: Checked

Offload CMD Read User RAM: 1 byte 0x0b 0x00 Fixed 0x00 Read RAM to Accum A, increment RAM
index. (Fahrenheit value)

Offload READ N/A N/A N/A N/A N/A Read Accum A and display*
(Return field 1)

Button 2

Control Name: Stored Temps C
Return Field Details: ON, uint8, decimal, “C”
Entry Field Details: OFF

Visible: Checked

Offload CMD Read User RAM: 1 byte 0x0b 0x00 Fixed 0x00 Read RAM to Accum A, increment RAM
index. (Fahrenheit value)

Offload CMD Subtract User data from
Accum A

0x15 0x00 Fixed 0x20 Accum A - 32

Offload CMD Multiply Accum A by User
Data

0x20 0x00 Fixed 0x05 Accum A x 5

Offload CMD Divide Accum A by User Data 0x30 0x00 Fixed 0x09 Accum A ÷ 9 (now Celsius)

Offload READ N/A N/A N/A N/A N/A Read Accum A and display*
(Return field 2)

NOTE: Write source can be “Fixed” or if using user data entry, can be “Entry Field 1” thru “Entry field 8” (aligns with button number)

2. Custom Command Test Personality
 Allows user to test custom commands without creating a personality first

 Users enter Opcode, Parameter and User Data into the personality input fields and hit the “execute” button

 Other buttons allow data results to be read from the Accumulator in various formats

 Users can chain several entries to simulate a personality

Example Usage:

This example simply shows a way to enter the “Load accumulator from User data” opcode, which can then be read out and

displayed using the “Read Accumulator” button. Users can enter any command in the opcode list (see reference in section 3 of

this document).

 Select “Custom Command Test” Personality from list

 Next to the “Enter Opcode” button, enter 01, then press the button

-Enters opcode 0x01 which is “Load Accumulator from User Data” (see reference in section 3)

Mpression Odyssey IoT Solutions Kits

24 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits

© Mpression by Macnica Group

 Next to the “Enter Param byte” button, enter 0, then press the button

-Parameter byte set to 0 selects Accumulator A (default accumulator) for destination

 Next to the “Enter User Data” button, enter 123456aa, then press the button

-This is a random hex value, a full word (4 bytes) so we recognize it. (Can load any hex value up to 4 bytes long)

 Press the “Read Accum hex” button to read contents of the accumulator in hex format

-Will see 0 (or whatever is already in accumulator) because the command has not been executed

 Press the “Execute Command” button to run the “Load accumulator…” opcode (loading the entered data)

-Runs the command, loading Accumulator A with contents 0x123456aa

 Press the “Read Accum hex” button again to see the data loaded above

-Should now see the data we loaded because the command was executed: 0x123456aa

NOTES:

-Now you can continue to enter opcodes (with parameter bytes and user data) to operate on loaded data, I2C I/O, LED or delay

functions, etc. You can read the contents of the accumulator at any time with the “Read Accum” buttons.

-The other “Read Accum…” buttons display the value in decimal formats: unsigned 32-bit, signed 8-bit (int8). The signed button

will show negative byte values with a minus sign. For displaying signed integers, you must match the size correctly… for example

int32 only converts 32-bit values correctly, and int8 for bytes. The buttons are setup for the return field size and type in the web

application. See below data entered in the web application and Appendix A.

Custom Command Test - Command Entries
Values entered or selected in Web Application are highlighted

Setup Commands

Offload
CMD type

Opcode Name or
Operation

Opcode
value

Parameter
byte

Write source User Data
word

Notes

Command
type field

 I2C device
adrs field

Register
adrs field

Fixed or
Entry field

Fixed write
data field

Offload CMD Reset state machine 0x60 0x00 Fixed 0x00 Reset all: Accum, counters, RAM index…

Button Commands

Offload
CMD type

Opcode Name or
Operation

Opcode
value

Parameter
byte

Write source User Data
word

Notes / Return field

Command
type field

 I2C device
adrs field

Register
adrs field

Fixed or Entry
Field

Fixed write
data field

Button 1

Button Text: Enter Opcode
Return Field Details: N/A
Entry Field Details: ON, hex, 0..0xff

Visible: checked

Offload CMD Load test Opcode 0xf1 0x00 Entry Field 1 0 Enter test opcode

Button 2

Button Text: Enter Param byte
Return Field Details: N/A
Entry Field Details: ON, hex, 0..0xff

Visible: checked

Offload CMD Load test Param byte 0xf2 0x00 Entry Field 2 0 Enter test Param byte

Button 3

Button Text: Enter User Data
Return Field Details: N/A
Entry Field Details: ON, hex, 0..0xffffffff

Visible: checked

Offload CMD Load test User Data word 0xf3 0x00 Entry Field 3 0 Enter test User Data (up to word)

Button 4

Button Text: Execute Command Visible: checked

Mpression Odyssey IoT Solutions Kits

 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits 25

© Mpression by Macnica Group

Return Field Details: N/A
Entry Field Details: N/A

Offload CMD Execute Test Command 0xf4 0x00 Fixed 0 Run the test command

Button 5

Button Text: Read Accum hex
Return Field Details: ON, UINT32, hex
Entry Field Details: OFF

Visible: checked

Offload READ Read Accumulator to App N/A N/A N/A N/A Read result in Accum to Return Field 5

Button 6

Button Text: Read Accum dec
Return Field Details: ON, UINT32, decimal
Entry Field Details: OFF

Visible: checked

Offload READ Read Accumulator to App N/A N/A N/A N/A Read result in Accum to Return Field 6

Button 7

Button Text: Read Accum int8
Return Field Details: ON, INT8, decimal
Entry Field Details: OFF

Visible: checked

Offload READ Read Accumulator to App N/A N/A N/A N/A Read result in Accum to Return Field 7

Mpression Odyssey IoT Solutions Kits

26 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits

© Mpression by Macnica Group

Appendix C: Offload Processing Personality
Creation Template

ODYSSEY OFFLOAD PROCESSING PERSONALITY – COMMANDS TEMPLATE
Use to plan command entry for creating offload processing personalities. See example filled in at bottom of file.

Setup Commands (15 Max)

Offload
CMD type

Opcode Name or
Operation

Opcode
value

Parameter
byte

Write source User Data
word

Notes

Command
type field

 I2C device
adrs field

Register
adrs field

Fixed or
Entry field

Fixed write
data field

Background Commands – Autonomous Field (5 Max)

Offload
CMD type

Opcode Name or
Operation

Opcode
value

Parameter
byte

Write source User Data
word

Notes

Command
type field

 I2C device
adrs field

Register
adrs field

Fixed or
Entry field

Fixed write
data field

Button Commands (5 Max each)

Offload
CMD type

Opcode Name or
Operation

Opcode
value

Parameter
byte

Write source User Data
word

Notes

Command
type field

 I2C device
adrs field

Register
adrs field

Fixed or Entry
Field

Fixed write
data field

Button 1

Button Text:
Return Field Details:
Entry Field Details:

Visible:

Button 2

Button Text: Visible:

Mpression Odyssey IoT Solutions Kits

 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits 27

© Mpression by Macnica Group

Return Field Details:
Entry Field Details:

Button 3

Button Text:
Return Field Details:
Entry Field Details:

Visible:

Button 4

Button Text:
Return Field Details:
Entry Field Details:

Visible:

Button 5

Button Text:
Return Field Details:
Entry Field Details:

Visible:

Button 6

Button Text:
Return Field Details:
Entry Field Details:

Visible:

Button 7

Button Text:
Return Field Details:
Entry Field Details:

Visible:

Button 8

Button Text:
Return Field Details:
Entry Field Details:

Visible:

Mpression Odyssey IoT Solutions Kits

28 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits

© Mpression by Macnica Group

EXAMPLE – filled in
Values entered or selected in Web Application are highlighted

Setup Commands (15 Max)

Offload
CMD type

Opcode Name or
Operation

Opcode
value

Parameter
byte

Write
source

User Data
word

Notes

Command
type field

 I2C device
adrs field

Register
adrs field

Fixed or
Entry field

Fixed write
data field

Offload CMD Reset state machine 0x60 0x00 Fixed 0x00 Reset all: Accum, counters, RAM index…

Offload CMD Set vars: set Counter1 0x0a 0x03 Fixed 0x08 Counter 1 set = 0x08 (loop counter)

Offload CMD LED on .25 secs 0x51 0x00 Fixed 0x100 LED On .25 secs (256 mS)

Offload CMD I2C read 2 bytes to Accum A 0x80 0x00 Fixed 0x0002e340 I2C read Temp reg, I2C adrs 0x40, reg offset
0xE3, 2 bytes

Offload CMD Mult Accum A x User Data 0x20 0x00 Fixed 0x3dc7 Accum A x 0x3DC7, + 0

Offload CMD Divide Accum A by User
Data

0x31 0x35 Fixed 0x320000 Accum A ÷ 0x320000, + 0x35

Offload CMD Write byte to User RAM 0x0c 0x01 Fixed 0x00 Write Accum A LS-byte to RAM, increment
RAM index

Offload CMD Delay 0x50 0x00 Fixed 0x800 Delay 2 secs (2048 mS)

Offload CMD Set vars: decrement Counter1 0x0a 0x04 Fixed 0x00 Decrement Counter 1

Offload CMD Branch if Counter1 not=0 0x69 0x87 Fixed 0x01 Branch if Counter 1 not = 0, back 7
commands (LED On cmd)

Offload CMD Set vars: reset counters, index 0x0a 0x11 Fixed 0x00 Reset Counters, RAM index = 0

Offload CMD LED on 2 secs 0x51 0x00 Fixed 0x800 LED On 2 secs (2048 mS) – indicate DONE

Button Commands (5 Max each)

Offload
CMD type

Opcode Name

Opcode
value

Parameter
byte

Write
source

User Data
word

Notes / Return field

Command
type field

 I2C device
adrs field

Register
adrs field

Fixed or
Entry field

Fixed write
data field

Button 1

Button Text: Stored Temps F
Return Field Details: ON, uint8, decimal, “F”
Entry Field Details: OFF

Visible: Checked

Offload CMD Read User RAM: 1 byte 0x0b 0x00 Fixed 0x00 Read RAM to Accum A, increment RAM
index. (Fahrenheit value)

Offload READ N/A N/A N/A N/A N/A Read Accum A and display*
(Return field 1)

Button 2

Control Name: Stored Temps C
Return Field Details: ON, uint8, decimal, “C”
Entry Field Details: OFF

Visible: Checked

Offload CMD Read User RAM: 1 byte 0x0b 0x00 Fixed 0x00 Read RAM to Accum A, increment RAM
index. (Fahrenheit value)

Offload CMD Subtract User data from
Accum A

0x15 0x00 Fixed 0x20 Accum A - 32

Offload CMD Multiply Accum A by User
Data

0x20 0x00 Fixed 0x05 Accum A x 5

Offload CMD Divide Accum A by User Data 0x30 0x00 Fixed 0x09 Accum A ÷ 9 (now Celsius)

Offload READ N/A N/A N/A N/A N/A Read Accum A and display*
(Return field 2)

NOTE: Write source can be “Fixed” or if using user data entry, can be “Entry Field 1” thru “Entry field 8” (aligns with button number)

Mpression Odyssey IoT Solutions Kits

 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits 29

© Mpression by Macnica Group

Example Web Application Entry of the 1st command in the 1st example table above (Reset state
machine):

Opcode: 0x60 Param byte: 0x00 User Data: 0x00

Mpression Odyssey IoT Solutions Kits

30 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits

© Mpression by Macnica Group

Appendix D: Odyssey I2C Addresses & Byte
Order

Here are the I2C addresses and standard byte order for existing I2C interfaces on the Odyssey kit. Note that the address and

order for the MAX10 FPGA are from designs that were included in the original personalities and are programmable (subject to

the specific FPGA design).

NOTE: The Accelerometer is on a SPI bus that is unavailable to the Offload Processing state machine.

Device with I2C Interface I2C Device Address Byte order

Silabs Si7020 Temp/Humidity Sensor 0x40 MSB first

Silabs Si1147 Light/Proximity/HRM sensor 0x60 LSB first

MAX10 FPGA 0x30* MSB first

 *Original FPGA design personalities, subject to FPGA design

The default (power-on) byte order for the Odyssey Offload Processing state machine is MSB first.

Temperature calculation Notes – SiLabs Si7020

C = ([16-bit reading] * 17572 / 6553600) – 47 (Celsius)

F = ([16-bit reading] * 158148 / 32768000) – 53 (Fahrenheit)

Mpression Odyssey IoT Solutions Kits

 Odyssey Offload Processing User Reference - Mpression Odyssey IoT Solutions Kits 31

© Mpression by Macnica Group

Document Revision History

Date Revision Changes

February 15, 2016 1.0 Initial Release - for v2.0 Odyssey Firmware

March 9, 2016 1.1 Miscellaneous cleanup, clarifications

March 30, 2016 1.2 New personality descriptions enhanced, usage added

